

Max Marks: 60 Date: 19.08.2022

NEET 24 MR BATCH CHEMISTRY: DCT

				Topic: M	Iole Conce	ept			
1.				s 20% C, 6.66% a of the compound		N and the rest	was oxyge	n. Its molar mas	ss is
	(a)	CH_4N_2O	(b)	$C_2H_4NO_2$	(c)	CH_3N_2O	(d)	$C_2H_8N_4O_2$	
2.	In a	gaseous reaction	of the type,	$aA + bB \rightarrow cC + cC$	dD, which	is wrong.			
	(a)	a litre of A co	mbines wit	h b litre of B to gi	ve C and D				
	(b)	a mole of A c	ombines wi	th b more of B to	give C and I	D			
	(c)	-		g of B to give C					
	(d)	a molecules o	f A combin	es with b molecul	les of B to gi	ve C and D.			
3.	Volu	me of oxygen at	STP requir	ed to burn comple	etely 22 g of	propane, C ₃ H ₈			
	(a)	22.4 L	(b)	44.8 L	(c)	56 L	(d)	11.2 L	
4.	Mass	s of calcium carb	oide, CaC ₂ , v	would be needed	to produce 1:	50 g of acetylene	, C ₂ H ₂ ,by usi	ng excess of wate	er?
	(a)	369.2	(b)	184.6	(c)	276.9	(d)	92.3	
5.		_			-		uminium is	burnt in the gase	eous
	•		•	le of aluminium o			(1)	2	
	(a)	1	(b)	1.5	(c)	2	(d)	3	
6.	_	of a compound ound is	on analysis	s gave 24 g carbo	on, 4 g hydr	rogen, 32 g oxyg	gen. The emp	oirical formula of	: the
	(a)	СНО	(b)	CH_2O	(c)	C_2H_2O	(d)	None of these	
7.	The v		ne at STP re	equired to liberate	all the Bron	nine and iodine p	resent in 1 m	ole of KI and 2 r	nole
	(a)	22.4	(b)	56	(c)	44.8	(d)	33.6	

Space for Rough Work

Learning with the Speed of Mumbai and the Tradition of Kota

8.		nl of methane is co conditions are	mpletely	burnt the volume of	foxygen	required and the volu	ime of (CO ₂ formed under the
	(a)	5 ml, 10 ml	(b)	10 ml, 5 ml	(c)	5 ml, 15 ml	(d)	10 ml, 10 ml
9.		le of C_xH_y required la of C_xH_y is	s 12 mol	es of O ₂ for combus	stion. If 1	molecular mass of hyd	drocarbo	on is 112g. Molecular
	(a)	$C_6 H_{10}$	(b)	C_8H_{16}	(c)	C_8H_8	(d)	C_9H_7
10.	1L of	CO ₂ is passed over	hot cok	e. The volume becom	nes 1.4 L	the product contains	:	
	(a)	0.6 L CO	(b)	$0.8 L CO_2$	(c)	$0.6 L CO_2$	(d)	0.8 L CO
11.	What	is the maximum ar	nount of	NaIO ₃ that can be pr	oduced l	by 12.8 g of HI		
	6HI +	$2HNO_3 \rightarrow 3I_2 + 3I_3 $	2NO + 4	H_2O				
	$3I_2 + 6$	6 NaOH → NaIO ₃	+ 5NaI +	- 3H ₂ O				
	(a)	3.3 g	(b)	33 g	(c)	0.33 g	(d)	None
12.	Weigl	nt of carbondioxid	e prepare	ed by heating 200 kg	g of Lim	estone which is 95% j	oure.	
	(a)	83.6 kg	(b)	167.2 kg	(c)	250.8 kg	(d)	125.9 kg
13.		per of moles of C for $B \rightarrow 3C$	rmed, if	8 moles of A and 10	moles of	f B are allowed to read	et accord	ling to given equation
	(a)	24 moles	(b)	15 moles	(c)	7.5 moles	(d)	12 moles
14.	When		and 12.5	5 ml of chlorine are	allowed	to react the final mix	ture co	ntains under the same
	(a)	22.5 ml of HCl			(b)	12.5 ml of HCl		
	(c)	20 ml of HCl and	1 2.5 ml o	of chlorine	(d)	20 ml of HCl only		
15.	React	ion is $Fe_2(SO_4)_3 + F$	$BaCl_2 \rightarrow$	FeCl ₃				
8. 9. 10. 11. 13.	How 1	many moles of BaC	l ₂ is need	led to produce ½ mo	le of FeO	Cl ₃ ?		
	(a)	$\frac{5}{2}$ moles	(b)	$\frac{1}{2}$ moles	(c)	$\frac{3}{4}$ moles	(d)	2 moles
				* * *	*			

Space for Rough Work

Max. Marks: 60 Date: 19.08.2022

NEET 24 MR BATCH BIOLOGY : DCT

Topic: Animal Tissue

16.	Have	rsian canals are pr	esent in:					
	(a)	Teeth	(b)	Muscles	(c)	Bone	(d)	Blood
17.	Skin	is a:						
	(a)	Cuboidal epithe	elium		(b)	Columnar epi	thelium	
	(c)	Pseudostratified	d epitheliu	m	(d)	Stratified epit	helium	
18.	Whic	h of these is not fo	ound in co	nnective tissue?				
	(a)	Hyaluronic acid	i		(b)	Basement me	mbrane	
	(c)	Collagen fibres			(d)	Fluid		
19.	Fibro	blasts, macrophag	es and ma	st cells are present in	n:			
	(a)	Cartilage tissue	:		(b)	Adipose tissu	e	
	(c)	Areolar tissue			(d)	Glandular epi	thelium	
20.	Stere	ocilia occur in:						
	(a)	Pseudostratifie	d epitheliu	m of trachea				
	(b)	Columnar epith	elium of s	stomach				
	(c)	Stratified colum	nnar epith	elium of pharynx				
	(d)	Pseudostratified	d columna	r epithelium epididy	mis			
21.	Whic	h statement is inco	orrect?					
	(a)	Mast cells and	basophils	secrete histamine an	d heparin	ļ.		
	(b)	Mast cells are s	maller tha	n basophils with a b	ilobed nu	icleus		
	(c)	Mast cells are l	ong lived,	basophils are short	lived			
	(d)	Mast cells are r	elatively s	sessile, basophils are	mobile			
22.	The c	riliated columnar e	pithelial c	ells in humans are k	nown to o	occur in		
	(a)	Eustachian tube	e and stom	nach lining	(b)	Brone bioles a	and Eallopian	tubes
	(c)	Bile duct and o	esophagus	S	(d)	Eallopian tub	es and urethra	ı
23.	Tend	ons and ligaments	are specia	lized types of				
	(a)	Areolar tissue	(b)	Adipose tissue	(c)	Eibrous	(d)	Epithelial tissue

$Learning\ with\ the\ Speed\ of\ Mumbai\ and\ the\ Tradition\ of\ Kota$

24.	Strati	fied epithelium is	found in:					
	(a)	Seminiferous to	ubule		(b)	Fallopian tube		
	(c)	Nasal cavity			(d)	Kidney tubule		
25.	Myog	globin is present ir	ı:					
	(a)	Heart	(b)	Kidney	(c)	Muscles	(d)	Nerve cells
26.	A pol	lysaccharide const	ituent foui	nd in the matrix of	cartilage is	:		
	(a)	Ossein	(b)	Collagen	(c)	Chondroitin	(d)	Hyaline
27.	Secre	tion of tears, milk	, sweat an	d oil are functions	of which of	f the following tissues	?	
	(a)	Epithelial	(b)	Nervous	(c)	Loose connective	(d)	Lymphoid
28.	Colla	gen fibres are cha	racteristic	of which tissue?				
	(a)	Muscular	(b)	Epithelial	(c)	Connective	(d)	Nervous
29.	Read	the following stat	ements an	d choose the correc	ct option.			
	(A)	Blood cells sec	rete fibres	of structural prote	ins called c	ollagen or elastin		
	(B)	Neuroglial cell	s protect a	nd support the nep	hrons			
	(C)	Osteocytes are	present in	spaces called lacui	nae			
	(D)	Striated muscle	e fibres are	bundled together i	in a parallel	I fashion		
	(E)	Biceps are invo	oluntary ar	d striated				
	(a)	C and D along	are wrong		(b)	B and D alone are v	wrong	
	(c)	A and C alone	are wrong		(d)	A, B and E along ar	re wrong	;
30.	Find t	the wrongly match	ned pair:					
	(a)	Unicellular gla	ndular cell	s – Goblet cell	(b)	Saliva – Exocrine s	ecretion	
	(c)	Fusiform fibres	s – Smootl	n muscle	(d)	Cartilage – Areolar	tissue	

Max Marks: 60 Date: 19.08.2022

NEET 24 MR BATCH CHEMISTRY : DCT ANSWER KEY

Topic: Mole Concept

1.	(d)	2.	(c)	3.	(c)	4.	(a)	5.	(a)
6.	(b)	7.	(b)	8.	(b)	9.	(b)	10.	(c)
11.	(a)	12.	(a)	13.	(b)	14.	(c)	15.	(b)

Max. Marks: 60 Date: 19.08.2022

NEET 24 MR BATCH BIOLOGY : DCT ANSWER KEY

Topic: Animal Tissue

16.	(c)	17.	(d)	18.	(b)	19.	(c)	20.	(d)
21.	(b)	22.	(b)	23.	(c)	24.	(c)	25.	(c)
26.	(c)	27.	(a)	28.	(c)	29.	(d)	30.	(d)